Muscle designed for maximum short-term power output: quail flight muscle.
نویسندگان
چکیده
Take-off in birds at high speeds and steep angles of elevation requires a high burst power output. The mean power output of the pectoralis muscle of blue-breasted quail (Coturnix chinensis) during take-off is approximately 400 W kg(-1) muscle, as determined using two independent methods. This burst power output is much higher than has been measured in any other cyclically contracting muscle. The power output of muscle is determined by the interactions between the physiological properties of the muscle, the stimulation regime imposed by the central nervous system and the details of the strain cycle, which are determined by the reciprocal interaction between the muscle properties and the environmental load. The physiological adaptations that enable a high power output to be achieved are those that allow the muscle to develop high stresses whilst shortening rapidly. These characteristics include a high myofibrillar density, rapid twitch contraction kinetics and a high maximum intrinsic velocity of shortening. In addition, several features of the strain cycle increase the power output of the quail pectoralis muscle. First, the muscle operates at a mean length shorter than the plateau of the length/force relationship. Second, the muscle length trajectory is asymmetrical, with 70 % of the cycle spent shortening. The asymmetrical cycle is expected to increase the power output substantially. Third, subtle deviations in the velocity profile improve power output compared with a simple asymmetrical cycle with constant lengthening and shortening rates. The high burst power outputs found in the flight muscles of quail and similar birds are limited to very brief efforts before fatigue occurs. This strong but short flight performance is well-suited to the rapid-response anti-predation strategy of these birds that involves a short flight coupled with a subsequent sustained escape by running. These considerations serve as a reminder that the maximum power-producing capacities of muscles need to be considered in the context of the in vivo situation within which the muscles operate.
منابع مشابه
The mechanical power output of the flight muscles of blue-breasted quail (Coturnix chinensis) during take-off.
Blue-breasted quail (Coturnix chinensis) were filmed during take-off flights. By tracking the position of the centre of mass of the bird in three dimensions, we were able to calculate the power required to increase the potential and kinetic energy. In addition, high-speed video recordings of the position of the wings over the course of the wing stroke, and morphological measurements, allowed us...
متن کاملModulation of flight muscle power output in budgerigars Melopsittacus undulatus and zebra finches Taeniopygia guttata: in vitro muscle performance.
The pectoralis muscles are the main source of mechanical power for avian flight. The power output of these muscles must be modulated to meet the changing power requirements of flight across a range of speeds. This can be achieved at the muscle level by manipulation of strain trajectory and recruitment patterns, and/or by intermittent flight strategies. We have measured the in vitro power output...
متن کاملThe Mechanical Power Output of a Tettigoniid Wing Muscle during Singing and Flight
1. The mesothoracic wings of tettigoniid insects are used in song production and flight; the metathoracic wings in flight only. In Neoconocephalus triops the wing stroke frequency during flight is about 25 Hz; the frequency during singing about 100 Hz. 2. The twitch duration of mesothoracic, first tergocoxal (Tcxl) wing muscles is only about one-half the duration of the upstroke or downstroke p...
متن کاملPower and efficiency of insect flight muscle.
The efficiency and mechanical power output of insect flight muscle have been estimated from a study of hovering flight. The maximum power output, calculated from the muscle properties, is adequate for the aerodynamic power requirements. However, the power output is insufficient to oscillate the wing mass as well unless there is good elastic storage of the inertial energy, and this is consistent...
متن کاملThe mechanical power output of the pectoralis muscle of cockatiel (Nymphicus hollandicus): the in vivo muscle length trajectory and activity patterns and their implications for power modulation.
In order to meet the varying demands of flight, pectoralis muscle power output must be modulated. In birds with pectoralis muscles with a homogeneous fibre type composition, power output can be modulated at the level of the motor unit (via changes in muscle length trajectory and the pattern of activation), at the level of the muscle (via changes in the number of motor units recruited), and at t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 205 Pt 15 شماره
صفحات -
تاریخ انتشار 2002